Osuvaa oppimisanalytiikkaa

Osuvaa oppimisanalytiikkaa

Kuinka kehitämme ja arvioimme TVT-taitojen osaamismerkistöä oppimisanalytiikan menetelmillä? Osuvat taidot -hankkeessa hyödynnetään oppimisanalytiikkaa osaamismerkkityön jatkokehittämisessä. 

Henry Paananen  11.05.2020

Oppimisanalytiikalla (Learning Analytics) tarkoitetaan oppimisen ja koulutuksen tietojen keräämistä, analysointia ja raportointia (Larusson & White, 2014; Siemens & Baker, 2013).  Oppimisanalytiikassa tulkitaan laajasti kerättyä dataa, joka on kerätty opiskelijoiden jättämistä digitaalisista jäljistä opintojen etenemisen, ennusteiden ja mahdollisten interventioiden tekemiseksi (Johnson et al, 2011). Itsessään oppimisanalytiikka ei rajoitu pelkästään algoritmisesti tehtyihin tulkintoihin, vaan datan tulkinnassa voidaan käyttää apuna erilaisia toimenpiteitä kunnollisten analyysien muodostamiseksi (Johnson et al, 2011). 

Oppimisanalytiikka itsessään on monialainen tutkimusalue, joka sisältää elementtejä koneoppimisesta (Machine Learning, ML), tekoälystä (Artificial Intelligence, AI), tiedonhausta, tilastollisista menetelmistä sekä visualisoinneista (Chatti, M. A., et al, 2012). Oppimisanalytiikan tutkimusalueella lainataan useista lähellä olevista tutkimusalueista olevia elementtejä, joten se ei ole aidosti uusi tutkimusalue (Chatti, M. A., et al, 2012). Lähellä olevia tutkimusalueita ovat koulutusorganisaation analytiikka, toimintatutkimus, koulutuksellisen tiedonlouhinta, suosittelujärjestelmät ja henkilökohtaistettu adaptiivinen oppiminen. 

Datasta tiedoksi 

Koulutuksellinen tiedonlouhinta on ollut itsenäinen tutkimusalue jo 2000-luvun puolivälistä alkaen. Se soveltaa tiedonlouhintatekniikoita koulutukselliseen dataan tavoitteenaan analysoida dataa ymmärtääksemme oppimisen tilanteita. (Baker & Yacef, 2009; Barner et al 2009).  

Oppimisanalytiikan ja koulutuksellisen tiedonlouhinnan ympäristöt, data, toimintaprosessi ja tavoitteet ovat hyvin samankaltaisia. Molemmissa hyödynnetään dataa, jota tulee erilaisista koulutukseen liittyvistä tietojärjestelmistä, mutta käytetyt tekniikat ovat useasti hieman poikkeavia. Koulutuksellinen tiedonlouhinta keskittyy useasti käyttämään tiedonlouhintatekniikoita (esim. klusterointi, luokittelu ja sääntöluokittelut), mutta oppimisanalytiikka sisältää myös muita metodeja kuten tilastolliset ja visualisointityökalut ja sosiaalisen verkoston analysointityökalut (SNA Social Network Analysis). Oppimisanalytiikassa sovelletaan tekniikoita käytännössä ja tutkitaan oppimisen ja opettamisen vaikuttavuutta. (Chatti, M. A., et al, 2012). 

Osuvaa oppimisanalytiikkaa 

Osuvat taidot -hankkeessa hyödynnetään oppimisanalytiikkaa osaamismerkkityön jatkokehittämisessä. Keräämme dataa oppimisympäristöistä ja täydennämme sitä kyselyillä, jotta saamme selityksiä ja vahvistusta tulkinnoillemme. Kohteena datankeräämisessä ovat pääosin Moodle-oppimisympäristöä käyttävät koulutuksenjärjestäjät, joita Osuvat taidot -hankkeessa on useita. 

Datankerääminen aloitetaan ensi syksynä tutkimusluvitusten ja muiden käytännön asioiden valmistuttua. Datankeräämisen jälkeen yhdistämme pseudonymisoituja aineistoja useista eri oppilaitoksista ja aloitamme aineiston analysoinnin. Tulossa mielenkiintoinen syksy! 

Kirjoitus on julkaistu alunperin TIEKE ry:n sivuilla www.tieke.fi.

Lähteet:

Baker, R. S.J.d. & Yacef, K. (2009). The State of Educational Data Mining in 2009: A Review and Future Visions. Journal of Educational Data Mining, 1(1), 3-17. 

Chatti, M. A., Dyckhoff, A. L., Schroeder, U., & Thüs, H. (2012). A reference model for learning analytics. International Journal of Technology Enhanced Learning, 4(5–6), 318–331. https://doi.org/10.1504/IJTEL.2012.051815 

Johnson, L., Smith, R., Willis, H., Levine, A. & Haywood, K. (2011). The 2011 Horizon Report. Austin, Texas: The New Media Consortium. 

Larusson, J.A., & White, B. (Eds.) (2014). Learning Analytics: from Research to Practice. NY, USA: Springer. doi: 10.1007/978-1-4614-3305-7 

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *